
A Measurement Study on Serverless Workflow
Services

Jinfeng Wen
Key Lab of High-Confidence Software Technology, MoE

Institute for Artificial Intelligence
Peking University, Beijing, China

jinfeng.wen@stu.pku.edu.cn

Yi Liu*
Key Lab of High-Confidence Software Technology, MoE

Peking University
Beijing, China

liuyi14@pku.edu.cn

Abstract—Major cloud providers increasingly roll out their
serverless workflow services to orchestrate serverless functions,
making it possible to construct complex applications effectively. A
comprehensive study is necessary to help developers understand
the pros and cons, and make better choices among these serverless
workflow services. However, the characteristics of these serverless
workflow services have not been systematically analyzed. To fill
the knowledge gap, we conduct a comprehensive measurement
study on four mainstream serverless workflow services, focusing
on both features and the performance. First, we review their
official documentation and extract their features from six di-
mensions, including programming model, state management, etc.
Then, we compare their performance (i.e., the execution time of
functions, execution time of workflows, orchestration overhead
time of workflows) under various settings considering activity
complexity and data-flow complexity of workflows, as well as
function complexity of serverless functions. Our findings and
implications could help developers and cloud providers improve
their development efficiency and user experience.

Index Terms—serverless workflow, cloud service, serverless
computing

I. INTRODUCTION

Serverless computing is a new paradigm in cloud comput-
ing, allowing developers to develop and deploy applications on
cloud platforms without managing underlying infrastructure,
e.g., load-balancing, auto-scaling, and operational monitor-
ing [1], [2], [3], [4], [5]. Due to its significant advantages,
serverless computing has been an increasingly hot topic in
both academia [6], [7], [8] and industry [9], [10], [11], [12],
whose market growth is expected to exceed $8 billion per year
by 2021 [13]. In serverless computing, developers prototype
an event-driven application as a set of interdependent func-
tions (named serverless functions), each of which performs a
single task [14]. To facilitate the coordination and composition
among these functions, major cloud providers have rolled out
serverless workflow services (e.g., AWS Step Functions [15])
to build complex, multi-step, stateful, and long-running ap-
plication flows. Moreover, serverless workflow services allow
developers to only specify the execution logic among func-
tions, without having to deal with complex and error-prone
communication and interactions among functions [6].

With the help of serverless workflow, complex applica-
tions (e.g., data processing pipeline and machine learning

* Corresponding author, Yi Liu

pipeline) can be constructed more efficiently [16]. Given the
surging interest in serverless computing and the increasing
dependence on serverless workflow, characterizing existing
serverless workflow services is of great significance. On one
hand, it can help developers understand the pros and cons of
these services and thus make better choices among them based
on various requirements. On the other hand, it can provide
insightful implications for cloud providers to improve these
services in a more targeted manner. However, to the best of
our knowledge, the characteristics of these serverless workflow
services have not been systematically analyzed.

To fill the knowledge gap, this paper presents the first
comprehensive study on characterizing and comparing exist-
ing serverless workflow services. Specifically, we focus our
analysis on four mainstream serverless workflow services,
including AWS Step Functions (ASF), Azure Durable Func-
tions (ADF) [17], Alibaba Serverless Workflow (ASW) [18],
Google Cloud Composer (GCC) [19]. We first review their
official documentation and characterize them in terms of six
dimensions including orchestration way, data payload limit,
parallelism support, etc. Then, we measure the performance
(including the execution time of functions, execution time of
workflows, orchestration overhead time of workflows, etc.) of
these serverless workflow services under varied settings. The
comparison is performed with two representative application
scenarios, i.e., sequence applications and parallel applications,
which refer to applications that can be prototyped as multiple
functions executing in a sequence and parallel way, respec-
tively. Sequence applications and parallel applications can be
represented as sequence workflows and parallel workflows,
respectively. More specifically, we focus on the following three
research questions that we can provide insights for developers
and cloud providers:

• RQ1: How does activity complexity affect the perfor-
mance? We first compare the performance of these server-
less workflow services under different levels of activity
complexity [20] (i.e., the number of serverless functions
contained in a workflow). We find that the execution time
of workflows, execution time of functions, and orchestration
overhead time of workflows all become longer for ASF,
ADF, ASW, and GCC with the increase of activity com-

748

2021 IEEE International Conference on Web Services (ICWS)

978-1-6654-1681-8/21/$31.00 ©2021 IEEE
DOI 10.1109/ICWS53863.2021.00102

plexity in both sequence and parallel workflows, except that
the orchestration overhead time of workflows of GCC has
certain fluctuations in parallel workflows. Additionally, in
sequence workflows, the execution time of workflows in
ASF, ADF, and ASW are mainly generated by the execu-
tion time of functions, whereas GCC is the orchestration
overhead time of workflows. In parallel workflows, when
more functions are required, the execution time of functions
gradually increases, and it determines the changing trend of
the execution time of workflows.

• RQ2: How does data-flow complexity affect the per-
formance? We then compare the performance of server-
less workflow services under different levels of data-flow
complexity [20] (i.e., the size of data payloads transferred
among functions). We find that only under high data-flow
complexity conditions ASF, ADF, and ASW will have a
certain impact on the performance in sequence and parallel
workflows, while GCC is affected by whether there is a
payload or not.

• RQ3: How does function complexity affect the perfor-
mance? We also compare the performance of these server-
less workflow services under different levels of function
complexity (i.e., the specified duration time of serverless
functions). We find that the execution time of workflows and
execution time of functions become longer for ASF, ADF,
and ASW as function complexity increases in both sequence
and parallel workflows, whereas there is no obvious impact
on GCC. Besides, we find that the orchestration overhead
time of workflows is less affected by function complexity.
Based on the derived findings, we have drawn insightful

implications for both developers and cloud providers. Specific
findings and implications are shown in Table I. We also open
up the source code and detailed results1 used in this study as
an additional contribution to the research community for other
researchers.

II. FEATURE COMPARISON

We select four mainstream serverless workflow services
from public cloud platforms, including AWS Step Functions
(ASF) (released December 1, 2016), Azure Durable Functions
(ADF) (released May 7, 2018), Alibaba Serverless Workflow
(ASW) (released July 2019), Google Cloud Composer (GCC)
(released May 1, 2018). These services have relatively mature
application practices and are more standardized rather than
those of private cloud platforms. Through reviewing official
documentation of these serverless workflow services, we com-
pare their features from the following dimensions:
• Orchestration way: the workflow definition model and model

definition language of serverless workflow services.
• Data payload limit: the size constraint of data payloads

transmitted among serverless functions of a serverless work-
flow.

• Parallelism support: whether serverless workflow services
support parallel multiple serverless functions.

1https://github.com/WenJinfeng/ICWS21-ServerlessWorkflow

• Execution time limit: the maximum execution time of work-
flows supported by serverless workflow services.

• Reusability: whether a serverless workflow can be used to a
part (called sub-workflow) of another serverless workflow.

• Supported development language: the supported develop-
ment languages for serverless workflow services.

Table II shows the feature comparison result as of Sep. 2020.

III. METHODOLOGY

We consider two representative scenarios, i.e., sequence ap-
plications and parallel applications, which can be represented
as sequence workflows and parallel workflows, respectively.
We present our methodology to measure and compare the
performance of serverless workflow services under various
settings.
Step 1: Determine performance metrics. In the first step,
we will introduce the performance metrics of our study.
Generally, the time of the whole process of workflow exe-
cutions consists of the execution time of functions and the
orchestration time of functions. Thus, the metrics related to
them are considered, and the specific definitions are explained
as follows. (i) totalTime is the total execution time to complete
a workflow. (ii) funTime is the actual execution time of
functions in a workflow. The calculation methods of funTime
are different in different application scenarios. Specifically, in
a sequence workflow, funTime is the sum of actual execution
times of all functions in this workflow, whereas funTime in a
parallel workflow is the time interval between the start time
of the first function execution and the end time of the last
function execution. (iii) overheadTime is the actual overhead
time introduced in the orchestration process of a workflow.
overheadTime may contain duration times of workflow start,
function scheduling, data state transition, parallel branch and
merge, etc. (iv) theo overheadTime is the theoretical overhead
time introduced in the orchestration process of a parallel work-
flow. Theoretically, executing paralleling multiple functions
costs the time of the function with the longest execution time.
The parallel workflow is theoretically a zero-overhead parallel
composition. Removing the theoretical specified duration time
of functions from the total time of workflows is the theoretical
overhead time of workflows. Though comparing overheadTime
with theo overheadTime, we believe that some interesting
findings can be found in our study. Note that the sum of
funTime and overheadTime equals totalTime for a workflow.
Step 2: Set up the experiment. Most of our experiments
were done from June 15 - August 20, 2020. In our study,
without considering the cold start of spawning the function
containers, serverless functions in workflows are in a warm
state to avoid undesired startup latency. A common practice
is to reuse launched containers by keeping them warm for a
period of time. Each group of experiments is repeated multiple
rounds to ensure the credibility of the results. We discord
the result of the first measurement and keep the remaining
results to evaluate the final performance of serverless workflow
services. Additionally, we adopt the median value of remaining

749

TABLE I
SUMMARY OF FINDINGS AND IMPLICATIONS

Activity complexity
Findings Implications
F.1: The total execution time of workflows, execution time of functions,
and orchestration overhead time of workflows become longer for ASF,
ADF, ASW, and GCC with the increase of activity complexity in both
sequence and parallel workflows, except that the orchestration overhead
time of workflows of GCC has certain fluctuations in parallel workflows.

I.1: (i) For developers, we advise selecting the serverless workflow
service with the best performance whether in both sequence and par-
allel workflows. (ii) For developers, considering the execution time of
workflows, we advise that ADF is used in small-scale (≤ 10) parallel
workflow tasks, ASW is used in large scale (between 10 and 100) tasks,
and ADF is used for larger-scale (> 100) tasks.

F.2: In sequence workflows, the execution time of workflows in ASF,
ADF, and ASW are mainly generated by the execution time of functions,
whereas GCC is the orchestration overhead time of workflows.

I.2: The cloud provider of GCC can analyze the framework of workflow
scheduling and improve significantly the efficiency of the workflow
execution of GCC.

F.3: When more functions participate in sequence workflows, the or-
chestration overhead time of workflows gradually increases, and the
orchestration overhead time determines the changing trend of the total
time of sequence workflows.

I.3: For developers, considering the execution time and orchestration
overhead time of workflows, we advise that ASF is used in activity-
intensive sequence workflow tasks.

F.4: When more functions participate in parallel workflows, the execution
time of functions gradually increases, and the execution time of functions
determines the changing trend of the total time of parallel workflows.

I.4: Cloud providers of different serverless workflow services can
further improve the efficiency of scheduling algorithms among functions
to reduce the function execution overhead in parallel workflows.

Data-flow complexity
Findings Implications
F.5: Regarding the data payload limit, different serverless workflow
services are different and do not have a uniform limit, i.e., ASF is 218B,
ASW is 215B, GCC has an internal storage limit of 215B, and ADF does
not have this restriction.

I.5: For cloud providers of different serverless workflow services,
they can exchange technologies with each other to break through their
respective implementation bottlenecks of data payload.

F.6: The performance of ASF, ADF, and ASW has little impact under
low data payload conditions. Only under high data payload conditions
will ASF, ADF, ASW have a certain impact, whereas GCC is affected
by whether there is a data payload or not.

I.6: For developers, considering the execution time and orchestration
overhead time of workflows, we advise that ASF is used in data-flow-
intensive sequence (or parallel) workflow tasks, where payloads are less
than 218B (or 215B).

F.7: ADF can pass a larger data payload (e.g., 220B). If developers use
ASF, they can store data payloads in Amazon S3, then use the Amazon
Resource Name (ARN) instead of raw data in serverless workflows.

I.7: For developers, when a workflow task needs to pass a larger
data payload (> 218B in sequence workflows, or > 215B in parallel
workflows), we advise using ADF, or ASF with the external storage.

Function complexity
Findings Implications
F.8: The function execution performance of ADF performs better than
other serverless workflow services whether in sequence or parallel
workflows.

I.8: Cloud providers of ASF, ASW, and GCC can improve the perfor-
mance of serverless functions on their serverless computing platforms.

F.9: The orchestration overhead time of workflows is less affected by
changes within serverless functions (function complexity), but more
affected by changes in the workflow structure (activity complexity) or
data payload (data-flow complexity).

I.9: For developers, considering the results of the execution time and
orchestration overhead time of workflows, we advise that ASF (or ADF)
is used in function-sensitive sequence (parallel) workflow tasks.

results to calculate totalTime, funTime, overheadTime, and
theo overheadTime of various serverless workflow services.

We leverage the sleep method to simulate functions with
different complexity levels. In order to ensure function com-
parability, we try to write serverless functions in a consistent
language. According to the serverless community survey,
Node.js accounts for 62.9% of languages used for serverless
development, and it is the most popular runtime overall [21].
In our study, ASF, ADF, and ASW adopt serverless functions
with the JavaScript language. Because DAGs of GCC are
written by a Python script, functions in GCC are achieved
by the Python language. Each function is relatively simple
and independently runs in a separate container. Moreover,
we mainly focus on the comparison of different serverless
workflow services rather than serverless functions. Thus, the
results of these services are comparable. Additionally, ASF
and ASW need to configure the function size in advance, thus
we set it as 128MB of the memory uniformly. Regarding the
region setting of serverless workflow services, ASF, ADF, and

GCC are set to US-west uniformly, whereas ASW chooses
Shanghai of China because it is only supported in Asia.

Step 3: Measure effects of activity complexity (RQ1). Activity
complexity describes the number of functions that a workflow
contains [20]. Considering both sequence and parallel work-
flows, we configure various numbers of functions in work-
flows. Because the maximum number of branches in parallel
is limited to 100 in ASW, the function number of our study
specifies as 2, 5, 10, 20, 40, 80, 100, and 120. Particularly,
the experimental test about the function number with 120 is to
verify the parallel limitations of ASF, ADF, and GCC, because
their documentation does not explicitly indicate. Shahrad et
al. [9] presented that the distribution of function execution
times on Azure Functions [22] shows a sufficiently log-normal
fit to the distribution of the average function execution time.
We find that the probability that most function execution
time is within one second, which illustrates that a majority
of serverless functions run simple tasks. In experiments of
activity complexity, we set all serverless functions to sleep for

750

TABLE II
A FEATURE COMPARISON IN FOUR SERVERLESS WORKFLOW SERVICES.

AWS Step Functions Azure Durable Functions Alibaba Serverless Workflow Google Cloud Composer
Orchestration way State Machine / State

Definition Language
(JSON)

Orchestrator Function / In
code

Flow / Flow Definition Language
(JSON)

Directed Acyclic Graph
(DAG) / In code

Data payload limit 256KB Unknown 32KB Unknown
Parallelism support Yes Yes Yes Unknown

Execution time
limit

Standard type: 1 year
Express: 5 minutes Unlimited 1 year Unlimited

Reusability Yes Yes Yes No
Supported develop-
ment language

Java, .NET, Ruby,
PHP, Python (Boto 3),
JavaScript, Go, C++

C#, JavaScript, F#, Pow-
erShell, Python

Java, Python, PHP, .NET, Go,
JavaScript

Python 2, Python 3

one second.
Step 4: Measure effects of data-flow complexity (RQ2). Data-
flow complexity reflects on data payload used in pre-and post-
conditions of the function execution [20]. Considering both
sequence and parallel workflows, we configure functions with
various data payloads. Table II shows that the maximum data
size between functions in ASW is 32KB (215B). To verify
whether ASW can pass a larger data payload, we set data pay-
loads with 0B, 25B, 210B, 215B, 216B. For most of sequence
applications [16], we find that about five serverless functions
can basically fulfill their requirements unless applications need
to add additional functionalities. In our experiments, we set
five serverless functions with the same functionality in parallel
workflows.
Step 5: Measure effects of function complexity (RQ3).
Function complexity reflects on the time required to execute a
serverless function. Considering both sequence and parallel
workflows with five same serverless functions, we config-
ure various specified duration times of serverless functions.
Shahrad et al. [9] mentioned that 96% of serverless functions
take less than 60 seconds on average. Thus, we set the
specified duration time of sleep functions as 50ms, 100ms,
1s, 10s, 20s, 40s, 60s, and 120s without data payloads.

IV. RESULTS

In this section, we show and discuss results under vari-
ous levels of activity complexity, data-flow complexity, and
function complexity considering both sequence and parallel
application scenarios.

A. Activity Complexity (RQ1)

Activity complexity reflects on the number of serverless
functions contained in a workflow.

1) Sequence application scenario: Fig. 1 represents total-
Time, funTime, and overheadTime for various numbers of func-
tions contained in sequence workflows for ASF, ADF, ASW,
and GCC. The horizontal axis is the number of functions, and
the vertical axis is the duration time in seconds. Each bar in
Fig. 1 consists of funTime and overheadTime produced from
the workflow with a fixed number of functions. Note that the
sum of funTime and overheadTime equals totalTime for this

2 5 10 20 40 80 100 1200

25

50

75

100

125

Du
ra

tio
n

Ti
m

e(
se

c)

96
.7

6%

97
.8

7%

97
.8

2%

98
.1

2% 98
.1

9%

98
.0

5% 97
.9

2%

97
.7

6%

AWS Step Functions (ASF)
funTime
overheadTime

2 5 10 20 40 80 100 1200

25

50

75

100

125

94
.0

5%

95
.8

5%

94
.3

4%

92
.7

5% 93
.0

4%

91
.0

0% 90
.6

4%

88
.8

5%

Azure Durable Functions (ADF)
funTime
overheadTime

2 5 10 20 40 80 100 120
Function Number

0

25

50

75

100

125

Du
ra

tio
n

Ti
m

e(
se

c)

90
.7

4%

91
.4

7%

94
.1

3%

92
.2

7% 93
.7

6%

93
.7

1% 93
.5

1%

93
.5

6%

Alibaba Serverless Workflow (ASW)
funTime
overheadTime

2 5 10 20 40 80 100 120
Function Number

0

2000

4000

6000

8000

6.
30

%

4.
15

%

4.
12

%

6.
21

%

7.
64

%

8.
60

% 30
.2

8%

20
.8

3%

Google Cloud Composer (GCC)
funTime
overheadTime

Fig. 1. The performance of various levels of activity complexity in sequence
workflows.

workflow. The value next to the bar indicates the percentage
of funTime to totalTime.

For totalTime and funTime in Fig. 1, as more serverless func-
tions are added to sequence workflows, totalTime and funTime
of ASF, ADF, ASW, and GCC both increase. Undoubtedly,
when the number of functions contained in sequence workflow
increases, funTime will inevitably increase, thus totalTime in-
creases. Generally speaking, five one-second functions have a
totalTime of more than five seconds, ten one-second functions
are more than ten seconds, etc. We find that totalTime of
ASF, ADF, and ASW basically conforms to such a growing
trend. Besides, totalTime of ASF, ADF, and ASW depends on
funTime. Specifically, the percentage value of ASF fluctuates
between 96.76% and 98.19%, ADF is between 91.00% and
95.85%, and ASW is between 90.74% and 94.13%. However,
the percentage value of GCC is only between 4.12% and
8.60%, thus it illustrates that most of the time on GCC is
spent on overheadTime rather than funTime. The main reason
may be due to the environment setting itself.

For overheadTime in Fig. 1, we find that overheadTime of

751

150
250 Number = 2

250
500 Number = 5

2.2
2.4

5.5
6.5

500
1000 Number = 10

1000

2000 Number = 20

10.5
11.5

22
24

1500
2500

to
ta

lT
im

e(
se

c)

Number = 40

2500

5000 Number = 80

43
45

86
89

6400
6800 Number = 100

8800
9300 Number = 120

ASF ADF ASW GCC
108
113

ASF ADF ASW GCC
125
135

Fig. 2. The comparison of totalTime under various levels of activity
complexity in sequence workflows.

ASF, ADF, ASW, and GCC gets longer as more functions are
added to sequence workflows. Thus, the number of functions
contained in sequence workflows will affect the orchestration
overhead of workflows.

To comprehensively compare the performance of ASF, ADF,
ASW, and GCC, we display the statistical results of all
measurements in the format of the box plot. Fig. 2 shows
that the comparison of totalTime under varied numbers of
functions for ASF, ADF, ASW, and GCC. We observe that
ASF has the lowest and most stable totalTime, whereas GCC
is the opposite. Additionally, when the number of functions
contained in sequence workflows does not exceed 40, the
overall result about totalTime of ADF is lower than that
of ASW. However, when the number of functions increases
(larger than 40), totalTime of ADF begins to exceed that of
ASW. To explore which factors affect totalTime, we observe
the distribution results of funTime and overheadTime. We find
that funTime is longer than the theoretical execution time of
functions in Fig. 3, where the origin point of the Y-axis on
each sub-graph is the theoretical execution time of functions,
i.e., 2s, 5s, 10s, 20s, 40s, 80s, 100s, 120s. Fig. 3 also shows
that ADF has the lowest funTime, followed by ASW, ASF, and
finally GCC. For the overheadTime comparison, its distribution
is shown in our GitHub. We find that no matter how many
functions are in sequence workflows, ASF often has the lowest
overheadTime, and GCC is still the highest. In particular,

10
20 Number = 2

25
35 Number = 5

2.1
2.2

5.2
5.4

50
75

Number = 10

80
100
120

Number = 20

10.3
10.6

20.5
21.5

200

300

fu
nT

im
e(

se
c)

Number = 40

400

600
Number = 80

41
42

82
84

1500
2000
2500

Number = 100
2000

2500
Number = 120

ASF ADF ASW GCC

102
104

ASF ADF ASW GCC

124
128

Fig. 3. The comparison of funTime under various levels of activity complexity
in sequence workflows.

for the changing trend of ADF and ASW, it is basically
consistent with the comparison of totalTime in Fig. 2. Thus,
the changing trend of the total time of workflows in sequence
workflow is mainly affected by the orchestration overhead time
of workflows. Reducing the orchestration overhead is vital
for serverless workflow. Strategies about workflow start, state
transition, and function scheduling need to be rethought to
design by cloud providers.

2) Parallel application scenario: Fig. 4 shows that to-
talTime, funTime, and overheadTime of varied numbers of
functions contained in parallel workflows for ASF, ADF,
ASW, and GCC. As more serverless functions are added to
parallel workflows, totalTime of ASF, ADF, ASW, and GCC
is showing an increasing trend. From the percentage values
(the ratio of funTime to totalTime) in ASF and ADF, we can
observe that totalTime is mainly used for their funTime. Values
in ASF range from 85.33% to 99.25%, whereas those of ADF
are from 85.62% to 95.94%. Additionally, for ASW, when
the number of functions is small, its totalTime is mainly used
for function executions. However, when more functions are
added to parallel workflows, its proportion values gradually
decrease. It illustrates that overheadTime is increasing with
the increase of the number of functions. On the contrary, for
GCC, when the number of functions is small, its proportion is
sufficiently low. It illustrates that the consumed time is longer

752

for overheadTime in GCC. When more functions participate in
parallel workflows, funTime of GCC gradually increases. The
possible reason is that there are many parallel functions and
the execution scheduling between them is heavy.

2 5 10 20 40 80 100 120

10

20

30

40

Du
ra

tio
n

Ti
m

e(
se

c)

87
.6

7%

86
.4

7%

85
.3

3%

89
.7

1% 96
.6

3%

98
.6

0%

99
.2

3%

99
.2

5%

AWS Step Functions (ASF)
funTime
overheadTime

2 5 10 20 40 80 10

0 1

200

10

20

30

40

93
.1

0%

89
.7

8%

92
.8

6%

92
.7

9%

95
.9

4% 85
.6

2%

89
.2

3%

89
.2

4%

Azure Durable Functions (ADF)
funTime
overheadTime

2 5 10 20 40 80 100 120
Function Number

0

10

20

30

40

Du
ra

tio
n

Ti
m

e(
se

c)

91
.7

4%

90
.7

4%

84
.8

4%

87
.5

1%

73
.2

9%

63
.0

4%

55
.1

0%

Alibaba Serverless Workflow (ASW)
funTime
overheadTime

2 5 10 20 40 80 100 120
Function Number

0

500

1000

1500

2000

2500

3.
27

%

8.
82

%

20
.3

0%

62
.0

6% 83
.7

7% 97
.5

8%

90
.4

2%

94
.6

5%

Google Cloud Composer (GCC)
funTime
overheadTime

Fig. 4. The performance of various levels of activity complexity in parallel
workflows.

In parallel workflows, theoretically, all serverless func-
tions with the same task start and complete at the same
time. Thus, excluding the execution time of a single func-
tion from totalTime is the theoretical orchestration overhead
time (theo overheadTime) of this workflow. Fig. 5 repre-
sents the comparison of overheadTime and theo overheadTime
under various numbers of functions contained in parallel
workflows for ASF, ADF, ASW, and GCC. It shows that
theo overheadTime increases as more functions are added
to parallel workflows. We find that theo overheadTime is
much larger than overheadTime. The value next to the bar
indicates the percentage of theo overheadTime that exceeds
overheadTime. Specifically, for ASF, its value can arrive as
high as 12862.54%, ADF is as high as 1832.45%, ASW
is as high as 200.91%, and GCC is as high as 4020.73%.
In addition, as the number of parallel functions increases,
overheadTime becomes longer for ASF, ADF, and ASW. It
takes a certain amount of time to process the branch and merge
in parallel workflows. However, there are certain fluctuations
in overheadTime of GCC, and fluctuations may be caused by
its environment configuration.

Distributions of totalTime, funTime, and overheadTime are
shown in our GitHub for various numbers of functions con-
tained in parallel workflows. GCC has the longest totalTime in
parallel experiments. When parallel functions with small-scale
(less than or equal to 10), totalTime of ASF, ADF, and ASW is
not much different, but the result of ADF is the lowest. When
more functions (between 10 and 100) are paralleled into the
workflow, ASW begins to show its advantages that have the
totalTime result with lower and more stable compared to ASF
and ADF. Since ASW has a limit of 100 for parallel tasks, no

2 5 10 20 40 80 100 1200

10

20

30

40

Du
ra

tio
n

Ti
m

e(
se

c)

44
.6

7%

44
.0

5%

63
.7

3%

40
0.

00
%

23
80

.3
9%

66
72

.2
2%

12
42

0.
00

%

12
86

2.
54

%

AWS Step Functions (ASF)
theo_overheadTime
overheadTime

2 5 10 20 40 80 100 1200

10

20

30

40

16
.0

0%

71
.7

7%

12
3.

53
%

69
1.

07
%

18
32

.4
5%

52
8.

72
%

75
4.

35
%

76
6.

35
%

Azure Durable Functions (ADF)
theo_overheadTime
overheadTime

2 5 10 20 40 80 100 120
Function Number

0

10

20

30

40

Du
ra

tio
n

Ti
m

e(
se

c)

20
0.

91
%

13
9.

50
%

62
.1

9%

15
1.

10
%

73
.2

4%

68
.6

0%

49
.4

9%

Alibaba Serverless Workflow (ASW)
theo_overheadTime
overheadTime

2 5 10 20 40 80 100 120
Function Number

0

500

1000

1500

2000

2500

2.
55

%

8.
88

%

24
.6

7%

16
2.

58
%

51
4.

79
%

40
20

.7
3%

94
3.

86
%

17
69

.3
4%

Google Cloud Composer (GCC)
theo_overheadTime
overheadTime

Fig. 5. The comparison of overheadTime and theo overheadTime under
various levels of activity complexity in parallel workflow.

more parallel functions can be executed. In the case of parallel
functions with greater than 100, ADF can complete workflows
in a shorter totalTime. Through observing the distribution of
funTime, we find that the changing features of funTime are
the same as totalTime distribution for ASF, ADF, and ASW.
It illustrates that the changing trend of totalTime depends on
funTime. Fig. 5 shows that the number of functions affects
overheadTime of parallel workflows. Similarly, overheadTime
distribution also shows such features. Moreover, when the
number of functions does not exceed 40, ADF has the lowest
overheadTime. As the number of functions increases from
40 to 120, ASF exhibits a lower overheadTime than ADF,
ASW, and GCC. However, overheadTime values are relatively
small for ASF, ADF, and ASW, and have little effect on their
totalTime. Thus, in actual scenarios, the effect of totalTime in
parallel workflows is usually considered.

See Findings F.1, F.2, F.3, F.4, and Implications I.1, I.2,
I.3, I.4 in Table I.

B. Data-flow Complexity (RQ2)

Data complexity reflects on the sizes of data payloads
passed among serverless functions in a workflow.

1) Sequence application scenario: Fig. 6 shows the perfor-
mance of data payloads between 0B to 216B for ASF, ADF,
ASW, and GCC. We add additional measurements for each
serverless workflow service. (i) For ASF, the size limit of the
data payload in a workflow is 256KB (218B). We conduct
measurements about the data payload with 218B, and its
totalTime, funTime, and overheadTime are respectively 6,599s,
5,683s, and 0.916s. In addition, when we add additional
measurements that data payload is large than 218B, a validation
error is detected, and it prompts the value at “input” failed to
satisfy the constraint and must have a length less than or equal
to 262,144 (i.e., 218B). This error illustrates that data payload

753

restriction described in the ASF documentation is consistent
with the actual usage. (ii) For ADF, its documentation does
not mention its size limit about data payload. In order to
measure whether ADF supports a larger data payload, we
conduct measurements of data payload with 220B, and its
totalTime, funTime, and overheadTime are 27.613s, 6.688s,
and 20.925s, respectively. (iii) For ASW, it exists the concept
of local variable. When the payload is set as 215B, a failure
occurs. It also verifies that the total size of the input, output
and local variables of each step in ASW cannot exceed 32KB.
To observe the impact of data payload, we add measurements
of data payload with 214B to Fig. 6. (iv) For GCC, when
data payload is set as 216B, a “mysql” error occurs that
storing a message is bigger than 65,535 bytes. We check the
environment resources of GCC and find that Cloud SQL is
used to store metadata to minimize the possibility of data
loss. Thus, experiments of data payload with 216B cannot be
performed due to the storage limitation.

Fig. 6 shows that when data payload is less than or equal
to 210B, totalTime, funTime, and overheadTime of ASF, ADF,
and ASW have little effect. When data payload is greater than
210B, totalTime of ASF and ASW increases slightly. However,
considering the results of ADF in data payload 220B, we
find that totalTime of ADF increases significantly. Thus, we
conclude that the performance of ASF, ADF, and ASW has
little impact under low data payload conditions. Only under
high data payload conditions will ASF, ADF, and ASW have
a certain impact.

0 25 210 215 216
5.00

5.25

5.50

5.75

6.00

6.25

6.50

Du
ra

tio
n

Ti
m

e(
se

c)

97
.8

7%

97
.8

0%

97
.7

7%

96
.3

9%

94
.4

8%

AWS Step Functions (ASF)
funTime
overheadTime

0 25 210 215 216
5.00

5.25

5.50

5.75

6.00

6.25

6.50

95
.8

5%

94
.1

6%

94
.7

1%

84
.0

1%

79
.6

7%

Azure Durable Functions (ADF)
funTime
overheadTime

0 25 210 214 215 216

Function Payload

5.00

5.25

5.50

5.75

6.00

6.25

6.50

Du
ra

tio
n

Ti
m

e(
se

c)

91
.4

7%

91
.9

3%

90
.1

7%

89
.7

5%

na
n%

na
n%

Alibaba Serverless Workflow (ASW)
funTime
overheadTime

0 25 210 215 216

Function Payload
0

200

400

600

800

1000

4.
15

%

3.
43

%

4.
04

%

3.
12

%

Google Cloud Composer (GCC)
funTime
overheadTime

Fig. 6. The performance of various levels of data-flow complexity in sequence
workflow.

To compare the result distribution of measurements, we
show their respective box plots in our GitHub. For the com-
parison of totalTime under various data payloads in sequence
workflows, in the low data payload range (≤ 210B), totalTime
of ASF, ADF, and ASW is not much different, and totalTime
of ASF and ADF is lower than ASW. In the high data
payload range (between 210B and 215B), totalTime of ASF is

the lowest. Considering previous analysis about data payload
between 215B and 218B in Fig. 6, similarly, ASF is lower than
ADF with regard to totalTime. However, whether in the low
data payload or high data payload, totalTime of GCC is the
highest. For the distribution of funTime, similar to Fig. 3, ADF
has the lowest funTime, followed by ASW, ASF, and finally
GCC. Specifically, when payloads are within 210B, values of
ASF, ADF, and ASW maintain between 5s and 5.6s, while
GCC is between 20s and 150s. Additionally, previous results
of data payload between 215B and 216B in Fig. 6 also show
that ASF is lower than ADF with regard to overheadTime. In
this situation, ASF is the best choice. However, when data
payload passing among functions grows to over 256KB, if
developers still want to use ASF, advise using Amazon S3 to
store the data, and pass the Amazon Resource Name (ARN)
instead of raw data.

0 25 210 215 2161.0

1.2

1.4

1.6

1.8

2.0

Du
ra

tio
n

Ti
m

e(
se

c)

86
.4

7%

87
.0

1%

85
.8

7%

83
.7

1%

AWS Step Functions (ASF)
funTime
overheadTime

0 25 210 215 2161.0

1.2

1.4

1.6

1.8

2.0

89
.7

8%

91
.5

9%

92
.3

6%

55
.4

5%

57
.2

5%

Azure Durable Functions (ADF)
funTime
overheadTime

0 25 210 214 215 216

Function Payload
1.0

1.2

1.4

1.6

1.8

2.0

Du
ra

tio
n

Ti
m

e(
se

c)

90
.7

4%

80
.1

9%

83
.2

6%

81
.5

2%

na
n%

na
n%

Alibaba Serverless Workflow (ASW)
funTime
overheadTime

0 25 210 215 216

Function Payload
0

50

100

150

200

250

8.
82

% 23
.2

9%

15
.6

5%

17
.8

5%

Google Cloud Composer (GCC)
funTime
overheadTime

Fig. 7. The performance of various levels of data-flow complexity in parallel
workflow.

2) Parallel application scenario: Fig. 7 represents the
performance of various data payloads in parallel workflow for
ASF, ADF, ASW, and GCC. First, we discuss the performance
of totalTime. totalTime of ASF and ASW is basically not
affected by low data payloads. However, transmit data payload
with 216B into parallel workflows in ASF, and produce 5 times
216B data size to the workflow output. The high data output
(larger than 218B) causes a failure of the workflow execution.
For ASW, it has the data payload limit (32KB), and the
merge of parallel functions also needs to be considered. From
Fig. 7, we observe that when data payloads are within 210B
in ADF, totalTime keeps stable. In the high data payload (<
210B), totalTime of ADF increases. We also carry out parallel
experiments with a data payload of 220B, where totalTime
is 2,130s which is larger than data payload with 216B. For
GCC, totalTime is affected by whether there is a payload
or not. When there is a payload, totalTime will increase,
but as the payload increases, it does not show a regular
trend. Next, we discuss the performance of funTime and

754

overheadTime. funTime and overheadTime of ASF and ASW
do not change much and are basically stable (maintaining
acceptable fluctuations, e.g., 100ms). For ADF, under high data
payloads, overheadTime increases greatly, and funTime does
not change much. Thus, overheadTime of ADF under high
data payloads is the main reason affecting totalTime change in
parallel workflows. For GCC, funTime and overheadTime both
increase in parallel workflows with the payload transmission.
Thus, only under high payload conditions will the performance
of ASF, ADF, and SW has a certain impact, while GCC is
affected by whether there is a payload or not.

The result distributions of totalTime, funTime, and over-
headTime are shown in our GitHub. Their distributions are
similar. When data payload is set to be small (≤ 210B),
totalTime, funTime, and overheadTime of ASF and ADF are
low and relatively stable, whereas GCC is discrete and volatile.
When data payloads are between 210B and 215B, totalTime,
funTime, and overheadTime of ASF are the lowest. However,
if developers want to pass into a large payload, only ADF,
or ASF with the external storage can execute in parallel
workflows.

See Findings I.5, I.6, I.7, and Implications I.5, I.6, I.7 in
Table I.

C. Function Complexity (RQ3)

Function complexity reflects on the specified duration time
of serverless functions contained in a workflow.

1) Sequence application scenario: Fig. 8 represents the
performance of various specified duration times of functions in
sequence workflows for ASF, ADF, ASW, and GCC. totalTime
of ASF, ADF, and ASW increases as the specified duration
time of functions gradually grows, whereas totalTime of GCC
is not affected. Besides, there is no obvious trend in GCC for
funTime and overheadTime. This situation is as described in
“F.2” of Table I.

0.05s 0.1s 1s 10s 20s 40s 60s 120s0

100

200

300

400

500

600

Du
ra

tio
n

Ti
m

e(
se

c)

71
.9

4%

85
.3

0%

97
.8

7%

99
.7

6%

99
.8

7% 99
.9

4% 99
.9

5%

99
.9

7%

AWS Step Functions (ASF)
funTime
overheadTime

0.05s 0.1s 1s 10s 20s 40s 60s 120s0

100

200

300

400

500

600

55
.9

1%

66
.5

0%

95
.8

5%

99
.4

6%

99
.5

9% 99
.8

4% 99
.8

9%

99
.9

2%

Azure Durable Functions (ADF)
funTime
overheadTime

0.05s 0.1s 1s 10s 20s 40s 60s 120s
Function Time

0

100

200

300

400

500

600

Du
ra

tio
n

Ti
m

e(
se

c)

32
.0

4%

39
.7

3%

91
.4

7%

98
.1

9%

99
.0

9% 99
.5

1% 99
.5

8%

99
.8

0%

Alibaba Serverless Workflow (ASW)
funTime
overheadTime

0.05s 0.1s 1s 10s 20s 40s 60s 120s
Function Time

0

200

400

600

800

1000

1200

1400

3.
50

% 26
.4

6%

12
.4

3%

13
.5

1%

20
.8

8%

26
.8

2%

34
.2

6% 59
.5

0%

Google Cloud Composer (GCC)
funTime
overheadTime

Fig. 8. The performance of various levels of function complexity in sequence
workflow.

The changes of overheadTime are shown in Table III. When
the number of functions contained in sequence workflows is
fixed, overheadTime generally does not increase significantly
for ASF, ADF, ASW, and they are roughly maintained within
a certain range. Thus, we conclude that changes within the
function may not affect overheadTime, whereas changes be-
tween the workflow structure and data payload may have a
certain impact on it. However, the fluctuation of overheadTime
of GCC is relatively large, ranging from 430s to 900s.

TABLE III
MEDIAN OF overheadTime (SECONDS) ABOUT THE SPECIFIED DURATION

TIME OF FUNCTIONS IN SEQUENCE WORKFLOWS.

0.05s 0.1s 1s 10s 20s 40s 60s 120s
ASF 0.188 0.121 0.113 0.119 0.127 0.120 0.150 0.157
ADF 0.246 0.272 0.219 0.271 0.408 0.320 0.339 0.507
ASW 0.738 1.036 0.479 0.926 0.922 0.978 1.264 1.207
GCC 903.720 676.320 852.360 810.600 637.020 663.540 647.280 433.320

Distribution figures about totalTime, funTime, and over-
headTime are shown in our GitHub. We find that both ASF
and ADF have a lower totalTime than ASW and GCC.
Furthermore, the measurement results of ASF are more stable
than ADF. For the funTime distribution, similar to Fig. 3,
ADF has the lowest funTime, followed by ASW, ASF, and
finally GCC. Regarding the distribution of overheadTime, ASF
has the lowest result among all serverless workflow services
overall.

2) Parallel application scenario: When the number of
functions contained in parallel workflows is deterministic and
the specified duration time of functions increases, totalTime
and funTime must increase. However, totalTime and funTime of
GCC do not increase with the increase of the specified duration
time of functions in parallel workflows. This figure is shown
in our GitHub. To observe the changes in overheadTime more
intuitively, Fig. 9 shows the comparison for overheadTime
and theo overheadTime. We find that theo overheadTime is
larger than overheadTime. We also find that overheadTime
and theo overheadTime for ASF, ADF, ASW, and GCC do not
change significantly with the increase of the specified duration
time of functions, and they basically fluctuate within a certain
range. ASF, ADF, and ASW are below 0.5s, while GCC is
below 200s. At the same time, Fig. 9 shows that overheadTime
of ASF is relatively stable, whereas ADF, ASW, and GCC have
certain fluctuations.

The distributions of totalTime, funTime, and overheadTime
are similar and they are shown in our GitHub. We find that the
results of ADF are the lowest in terms of totalTime, funTime,
and overheadTime, whereas GCC is the highest. However, as
far as the stability of the result is concerned, ASF is the best.
For ASW, its results are relatively unstable compared with
ADF, and there are more outliers.

See Findings F.8, F.9, and Implications I.8, I.9 in Table I.

V. DISCUSSION

For verifying our findings, we conduct experiments of two
real-world serverless application workloads, i.e., KMeans and
MapReduce. Then, we discuss some limitations of our study.

755

0.05s 0.1s 1s 10s 20s 40s 60s 120s0.0

0.1

0.2

0.3

0.4

0.5

0.6

Du
ra

tio
n

Ti
m

e(
se

c)

54
.4

9%

47
.0

6%

44
.0

5%

55
.4

9%

60
.3

6%

82
.5

8%

90
.8

5%

10
2.

91
%

AWS Step Functions (ASF)
theo_overheadTime
overheadTime

0.05s 0.1s 1s 10s 20s 40s 60s 120s0.0

0.1

0.2

0.3

0.4

0.5

0.6

89
.8

6%

58
.5

4%

71
.7

7%

50
.0

0%

41
.5

6%

14
0.

00
%

91
.8

4% 66
.0

6%

Azure Durable Functions (ADF)
theo_overheadTime
overheadTime

0.05s 0.1s 1s 10s 20s 40s 60s 120s
Function Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Du
ra

tio
n

Ti
m

e(
se

c)

24
0.

69
% 73
.7

1%

13
9.

50
%

12
8.

50
%

36
.0

5%

12
8.

67
%

12
3.

84
%

13
1.

21
%

Alibaba Serverless Workflow (ASW)
theo_overheadTime
overheadTime

0.05s 0.1s 1s 10s 20s 40s 60s 120s
Function Time

0

50

100

150

200

250

300

33
.6

8%

20
.8

4%

10
.0

0%

39
.7

0%

26
.5

1%

35
.0

8%

61
.9

3%

78
.9

9%

Google Cloud Composer (GCC)
theo_overheadTime
overheadTime

Fig. 9. The comparison of overheadTime and theo overheadTime under
various levels of function complexity in parallel workflow.

(1) KMeans application is implemented in a sequence
workflow, accomplishing the clustering functionality for point
sets with three-dimensional space. First, use a serverless
function to generate 1500 points, because the data payload
limit of ASW cannot generate the data of 2000 points. Second,
initialize centroid points randomly. For the KMeans algorithm,
the K-value of clustering needs to be given in advance. We
adopt Elbow Method to determine K as 8. Next, based on
the point set and centroid points, perform the clustering func-
tionality of KMeans. Finally, output and show the clustering
result.

400
900 totalTime

400
900 funTime

400
900 overheadTime

ASF ADF ASW GCC0

1

Du
ra

tio
n

Ti
m

e(
se

c)

ASF ADF ASW GCC0

1

ASF ADF ASW GCC0

1

Fig. 10. The performance of the KMeans application.

Fig. 10 represents the comparison of totalTime, funTime,
and overheadTime of the KMeans application for ASF, ADF,
ASW, and GCC. ASF shows the shortest totalTime and over-
headTime, and ADF has the shortest funTime (F.8 in Table I).
This is consistent with the implication I.3 in Table I. We also
find the same finding that the changing trend of totalTime
in sequence workflow is mainly affected by overheadTime
(F.3 in Table I) because funTime costs the relatively low and
stable time in this KMeans application. In terms of data-flow
complexity about data payloads, the previous conclusion (I.6
in Table I) is that when data payload is less than 218B, ASF
is advised to use. In the KMeans application, the data payload
size is within 218B, and the performance of ASF is the best

considering totalTime, overheadTime.
(2) MapReduce application is implemented in a parallel

workflow and is a workflow solution example [23]. The ap-
plication goal is to generate a batch of data and process them.
Count the number of occurrences of various data leveraging
MapReduce processing frame mode.

I.1 in Table I presents that ADF is used in small-scale
activity-intensive parallel workflows. Fig. 11 also shows that
ADF has a relatively short totalTime. However, the results from
totalTime and overheadTime of ASF are more stable than ADF.
In the MapReduce application, there is a certain data payload
to be transmitted. In the presence of data payload, the previous
conclusion is that the ASF is more suitable when data payloads
are less than 215B in parallel workflows (I.6 in Table I). Thus,
the results of ASF show relatively satisfactory totalTime and
overheadTime.

400
900 totalTime

400
900 funTime

400
900 overheadTime

ASF ADF ASW GCC0

1

Du
ra

tio
n

Ti
m

e(
se

c)

ASF ADF ASW GCC0

1

ASF ADF ASW GCC0

1

Fig. 11. The performance of the MapReduce application.

Limitations. We discuss the limitations of our study. (i)
Selection of application scenarios. Our study is based on se-
quence and parallel workflows. We may ignore other complex
structures, e.g., choice, missing valuable insights with regard
to the structure complexity of workflows. In future work, we
plan to extend our study to diversify workflow structure to
further obtain interesting findings. (ii) Experiments of GCC.
In our study, the results of GCC fluctuate greatly, and we
suppose that it may be related to its environmental setting.
To minimize this impact, we repeat several measurements.
From the perspective of serverless computing, we suppose that
functions performed in DAGs of GCC are not serverless, i.e.,
GCC is not designed for orchestrating serverless functions.
Communication ability between non-serverless functions may
be unstable on the cloud platform, thus orchestration overhead
dominates most execution time.

VI. RELATED WORK

In this section, we summarize the related work of serverless
computing and serverless workflow service.

Serverless computing is going to attract more attention.
Wang et al. [24] conducted a measurement study to charac-
terize architectures, performance, and resource management
of three serverless computing platforms. Maissen et al. [25]
designed a benchmark suite named FaaSDOM to facilitate the
performance testing of serverless computing platforms. These
studies are mainly from the perspective of serverless functions.
Different from them, our work focuses on the comparison of
mainstream serverless workflow services under the serverless
computing paradigm.

756

To facilitate the coordination of serverless functions on
serverless computing platforms, the authors [26] compared
serverless workflow services from their architectures and
workflow models in 2018. However, new information has been
updated on their official website. For example, Azure Durable
Functions currently has supported JavaScript and Python
languages. Akkus et al. [6] ran an image processing pipeline
using serverless workflow services. They found that the total
execution time of workflows is significantly more than the ac-
tual time required for function execution. As confirmed by our
study, a part of the time will be used for orchestration schedul-
ing between functions. Recently, the authors [27] presented
Triggerflow, which is an extensible trigger-based orchestration
architecture integrating various workflow models, e.g., State
Machines, Directed Acyclic Graphs, and Workflow as code.
It can be seen that there is a growing interest in serverless
workflows. Furthermore, we notice that serverless workflow
services are evolving quickly. Nevertheless, our findings and
implications serve as a snapshot of orchestration mechanisms,
provide performance baselines and suggestions for developers
to implement reliable and satisfying applications and help
cloud providers improve service efficiency.

VII. CONCLUSION

In this paper, we present the first comprehensive study on
characterizing existing serverless workflow services, i.e., AWS
Step Functions, Azure Durable Functions, Alibaba Serverless
Workflow, and Google Cloud Composer. We first characterize
and compare their features from six dimensions. Then, we
measure the performance of these serverless workflow ser-
vices under varied settings (i.e., different levels of activity
complexity, data-flow complexity, and function complexity).
Based on the results, some interesting findings, e.g, only under
high data-flow complexity conditions will the performance
of serverless workflow services has a certain impact, can be
useful to guide developers and cloud providers. Finally, we
report a series of findings and implications to further facilitate
the development with serverless workflow services.

ACKNOWLEDGMENT

This work was supported by the PKU-Baidu Fund Project
under the grant number 2020BD007.

REFERENCES

[1] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “A case for
serverless machine learning,” in Proceedings of Workshop on Systems
for ML and Open Source Software at NeurIPS, vol. 2018, 2018.

[2] E. de Lara, C. S. Gomes, S. Langridge, S. H. Mortazavi, and M. Roodi,
“Hierarchical serverless computing for the mobile edge,” in Proceedings
of IEEE/ACM Symposium on Edge Computing, 2016, pp. 109–110.

[3] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: experiments with HyperFlow, AWS
lambda and google cloud functions,” Future Generation Computer
Systems, vol. 110, pp. 502–514, 2020.

[4] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: distributed computing for the 99%,” in Proceedings of 2017
Symposium on Cloud Computing, 2017, pp. 445–451.

[5] R. Chard, K. Chard, J. Alt, D. Y. Parkinson, S. Tuecke, and I. Foster,
“Ripple: home automation for research data management,” in Proceed-
ings of 37th IEEE International Conference on Distributed Computing
Systems Workshops, 2017, pp. 389–394.

[6] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “Sand: towards high-performance serverless computing,” in
Proceedings of the 2018 USENIX Annual Technical Conference, 2018,
pp. 923–935.

[7] G. McGrath and P. R. Brenner, “Serverless computing: design, im-
plementation, and performance,” in Proceedings of 2017 IEEE 37th
International Conference on Distributed Computing Systems Workshops,
2017, pp. 405–410.

[8] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud programming
simplified: A berkeley view on serverless computing,” arXiv preprint
arXiv:1902.03383, 2019.

[9] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: characterizing and optimizing the serverless workload at
a large cloud provider,” in Proceedings of the 2020 USENIX Annual
Technical Conference, 2020, pp. 205–218.

[10] “Amazon,” https://aws.amazon.com, retrieved on September 10, 2020.
[11] “Microsoft,” https://azure.microsoft.com/en-us/, retrieved on September

10, 2020.
[12] “Google,” https://cloud.google.com/, retrieved on September 10, 2020.
[13] “Function-as-a-service market by user type (developer-centric

and operator-centric), application (web & mobile based,
research & academic), service type, deployment model,
organization size, industry vertical, and region - global forecast
to 2021,” https://www.marketsandmarkets.com/Market-Reports/
function-as-a-service-market-127202409.html, retrieved on September
10, 2020.

[14] P. Datta, P. Kumar, T. Morris, M. Grace, A. Rahmati, and A. Bates,
“Valve: Securing function workflows on serverless computing plat-
forms,” in Proceedings of the 29th International Conference on World
Wide Web, 2020, pp. 939–950.

[15] “Aws step functions documentation,” https://docs.aws.amazon.com/
step-functions/index.html, retrieved on September 10, 2020.

[16] “Serverless workflow applicable scenarios and best practices (in chi-
nese),” https://developer.aliyun.com/article/751573, retrieved on Septem-
ber 10, 2020.

[17] “What are durable functions?” https://docs.microsoft.com/en-us/
azure/azure-functions/durable/durable-functions-overview?tabs=csharp,
retrieved on September 10, 2020.

[18] “Aliyun serverless workflow (in chinese),” https://help.aliyun.com/
product, retrieved on September 10, 2020.

[19] “Google cloud composer,” https://cloud.google.com/composer?hl=en, re-
trieved on September 10, 2020.

[20] J. Cardoso, “Approaches to compute workflow complexity,” in Proceed-
ings of Role of Business Processes in Service Oriented Architectures
(Dagstuhl Seminar Proceedings). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2006.

[21] “2018 serverless community survey: huge growth
in serverless usage,” https://www.serverless.com/blog/
2018-serverless-community-survey-huge-growth-usage, retrieved
on September 10, 2020.

[22] “Azure functions,” https://azure.microsoft.com/en-us/services/functions/,
retrieved on September 10, 2020.

[23] “Etl-dataprocessing using mapreduce,” https://github.com/awesome-fnf/
ETL-DataProcessing, retrieved on September 10, 2020.

[24] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the 2018 USENIX
Annual Technical Conference, 2018, pp. 133–146.

[25] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “Faasdom: A
benchmark suite for serverless computing,” in Proceedings of the 14th
ACM International Conference on Distributed and Event-based Systems.
ACM, 2020, pp. 73–84.

[26] P. G. López, M. Sánchez-Artigas, G. Parı́s, D. B. Pons, Á. R. Ollo-
barren, and D. A. Pinto, “Comparison of faas orchestration systems,”
in Proceedings of 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion, 2018, pp. 148–153.

[27] P. G. López, A. Arjona, J. Sampé, A. Slominski, and L. Villard,
“Triggerflow: trigger-based orchestration of serverless workflows,” in
Proceedings of the 14th ACM International Conference on Distributed
and Event-based Systems, 2020, pp. 3–14.

757

